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Abstract: A Monte Carlo method for the estimation of the bias and inter-assay component of precision attributable to 
given combinations of assay and calibration routine is described. Simulations are performed by a computer program 
which uses the actual concentration versus response and concentration versus intra-assay precision characteristics of the 
assay under investigation as its database. In operation, a calibration routine is selected, the calibrators defined and the 
analytical process of calibration followed by the analysis of unknowns is reproduced. In this way the mean bias and inter- 
assay component of precision at a number of pre-defined concentrations covering the analytical range of the assay is 
estimated. The program is intended for use by analysts as a practical aid in the selection and optimization of appropriate 
calibration routines in an experimental environment. 
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Introduction 

Choice of the most appropriate calibration 
routines for use in drug analysis involving high- 
performance liquid chromatography (HPLC) 
or gas chromatography (GC) is often a source 
of disagreement between analysts involved in 
the same type of studies. For example, one 
survey revealed that over half those responding 
used unweighted regressions and that of those 
using weighted regressions a variety of weight- 
ing factors were employed [l]. The con- 
struction of calibration curves has long been 
part of the analytical chemist’s routine, but the 
traditional use of graph paper has been super- 
seded by the widespread introduction of 
computer-based data systems which define the 
calibration curve mathematically. Although 
there is an abundance of literature concerning 
least-squares linear regression, the differences 
between one routine and another is probably 
not apparent to the majority of analysts who 
lack detailed training in mathematics. On the 
other hand, the examples presented by the 
mathematicians to illustrate their theories 
often do not reflect the real situations met by 
the analyst. 

A comparison of the analytical situations 
frequently used as examples in the literature 

illustrating the use of regressions in assay 
calibration yielded a series of differences from 
the assays used in this laboratory, which is 
primarily concerned with quantitative chro- 
matographic drug analysis for biological fluids. 

These differences are listed below and, while 
possibly not significant when taken alone, 
when considered together call into question the 
validity of the application of particular cali- 
bration routines when applied to assays with 
markedly different characteristics. 

(I) Some of the literature examples used to 
illustrate the validity of regressions are limited 
to a lo-fold dynamic range, whereas in drug 
bioanalysis concentrations are commonly 
determined over ranges of 100 or.1000. 

(II) The number of calibrators used to 
define the curve may be quite large (>30) in 
the literature examples but most analysts limit 
the number of calibrators to around 10 in order 
to maximize the number of samples analysed in 
a single routine batch. Reducing the number of 
calibrators will increase the variability between 
individual calibration curves. 

(III) A change in the distribution pattern of 
the concentrations of the calibrators from an 
arithmetic series (e.g. 1,2,3 . . .), found in the 
literature, to a geometric series (e.g. 1, 10, 
100. . .) is sometimes employed by analysts 
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working with assays covering wide dynamic 
ranges. It has been shown that the precision 
with which a calibration curve is defined is 
dependent upon the distribution of the cali- 
brators [2]. 

(IV) The commonly used linear regression 
routines are derived with the assumption that 
the errors are either homoscedastic (i.e. stan- 
dard deviation is independent of concen- 
tration) or that the relative standard deviation 
is independent of concentration. In practice it 
is often found that the standard deviation (a,) 
at concentration (c) can be expressed by uc = 
crO + kc where crO is the standard deviation at 
zero concentration and k is a constant [3, 41. 
The question arises as to whether there is any 
advantage in using more robust, but more 
complex, regression routines which involve the 
estimation of individual weighting factors in 
this situation [5, 61. 

(V) HPLC UV photometric detectors with a 
linear range of >105 have been shown to 
exhibit changes in the specific response or 
sensitivity (i.e. response/concentration) of 
+5% of the mean value over a range of 9.52 
[7]. Experience in this laboratory has also 
shown that the specific response of both HPLC 
and GC systems can vary by up to + 10% of the 
mean value over a range of 1000. The effect of 
such variation in specific response, while still 
generally accepted as being within the allowed 
bounds of linearity, is not discussed in the 
literature. 

Two other factors can influence the choice of 
calibration routine used by the analyst. The 
first is the constraints imposed by the chro- 
matographic data system. Some only provide 
unweighted regressions and at least one manu- 
facturer reverses the normal convention of x 
representing the concentration and y rep- 
resenting the response in the regressions used 
in its integrators. In these cases the analyst is 
therefore faced with the prospect of being 
limited by the applications available, repro- 
gramming the data system or recalculating the 
data off-line. Finally, there is the necessity in 
the pharmaceutical industry to satisfy the 
requirements of the regulatory authorities. 

Considering the factors outlined above, it 
became evident that some practical means was 
required whereby an analyst could estimate the 
errors associated with particular combinations 
of assay characteristics and calibration routine. 
As a quantitative evaluation was required the 
process would of necessity be mathematical in 

nature but the mathematics should be largely 
transparent to the analyst and produce data 
output that is readily understandable. Monte 
Carlo simulations offered a solution by which 
the analytical process could be mimicked, i.e. 
generation of calibration data, definition of a 
calibration line and estimation of the concen- 
tration of unknowns. As the name implies, 
Monte Carlo methods involve the use of 
random numbers to simulate the production of 
experimental data, e.g. the generation of 
random numbers between 1 and 6 to represent 
the rolling of a dice. 

Measurements in analytical chemistry are 
subject to random fluctuations, albeit usually 
following a Gaussian distribution, and make 
ideal subjects for Monte .Carlo methods. A 
review of the technique made no mention of its 
use in the simulation of the calibration process 
though it has been used to compare least- 
squares and robust regressions in calibration 
and to test the robustness of three regression 
methods [S-10]. 

Errors in Analysis 

Before describing the Monte Carlo simu- 
lations it is worth making an examination of 
the errors associated with the reported drug 
concentrations of samples from pharmaco- 
kinetic studies. Generally the analyses are 
performed over a period of time with fresh 
calibration curves being generated for each 
batch of samples. The total error in any 
determined value can be broken down into a 
number of components as follows: 

(I) Intra-assay precision: this is a character- 
istic of the assay due to the pure errors of 
measurement associated with the instrumen- 
tation and the skill of the analyst. It is largely 
independent of the calibration curve as can be 
demonstrated by considering a general concen- 
tration (x) versus response (y) curve of the type 
y = ax* + bx + c, which effectively approxi- 
mates to y = bx when the degree of curvature 
and intercept are small. A change in the 
response (y) of, say 5% will result in a 
corresponding 5% change in the measured 
concentration (x), i.e. independent of the 
calibration curve. 

(II) Inter-assay component of the overall 
precision: the total precision (ur) is composed 
of the intra-assay (within-run) precision (uWR) 
and an inter-assay (between-run) component 
of precision (unn) according to uT2 = own* + 
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crBR2 [ll]. If the between-assay changes in the 
performance of the analyst, etc. are small, then 
the inter-assay component of precision can be 
regarded as being solely due to fluctuations in 
the calibration curves brought about by the 
normal random distribution of errors of the 
responses of the sets of calibrators. Its value 
will reflect the number and distribution of the 
calibrators and the weighting factor used in the 
regression. 

(III) Accuracy: it is unlikely that the cali- 
bration curve will exactly match the actual 
concentration versus response function over 
the entire assay range and this lack of fit will 
give rise to a concentration dependent bias in 
the determined values. 

(IV) Others: there is another source of pure 
errors which may affect a few individual 
samples within a batch and include cross 
contamination by adjacent samples of much 
higher concentration and gross errors such as 
pipetting the wrong volume for analysis or 
loading the chromatographic autosampler out 
of sequence. These errors should be rare in a 
well conducted assay and are independent of 
the calibration curve. 

Thus it is only errors II and III affecting the 
estimated concentrations which can be attrib- 
uted to the choice of calibration curve and it is 
these factors which are estimated by the Monte 
Carlo simulations described. 

Monte Carlo Simulations 

The design of the program was aimed at 
duplicating the analytical process and is illus- 
trated in the following example describing the 
stages involved in the simulations. 

(1) As a first requirement the concentration 
versus response and concentration versus intra- 
assay precision characteristics of the assay must 
be known. In this laboratory, these are 
normally determined as part of the assay 
validation by replicate analysis (n 2 6) of a 
series of samples of the appropriate blank 
matrix fortified with known amounts of analyte 
covering the proposed analytical range. The 
results are expressed in graphical form as 
smoothed curves from which data may be 
interpolated for use in the calculations. The 
normal calibration curve plot of response 
versus concentration (Fig. 1) is of limited value 
at low concentrations either for making a 
critical examination of the fit of the curve or 
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Figure 1 
A calibration curve for a gas chromatographic assay of a 
drug development candidate in plasma using electron 
capture detection. 

for interpolating values and the data should be 
replotted as in Figs 2 and 3. 

(2) Because the calibration errors will be 
concentration dependent, a number of concen- 
trations covering the assay range are evaluated 
and the values entered into the program 
database together with the corresponding 
values of mean specific response (i.e. response/ 
concentration) taken directly from Fig. 2. 
These points represent a series of unknowns in 
an assay batch and, for example, if a wide 
concentration range of l-1000 was to be 
examined the calibration errors at concen- 
trations of 1, 2, 5, 10, 20 . . . 1000 might be 
determined. 

(3) The number and distribution of the 
calibrators is defined and their concentrations 
are entered into the database together with 
their corresponding values of the mean specific 
response (Fig. 2) and relative standard devi- 
ation (Fig. 3). 

(4) A calibration function is selected for 
evaluation and individual values of the 
response (yi) are generated for each of the 
calibrators at every concentration (x) using the 
corresponding values of the mean specific 
response (y/x) from Fig. 1 and relative stan- 
dard deviation (RSD) from Fig. 3 according to 
the formula yi = ~(1 + 0.01 x X RSD X g), 
where g is a Gaussian or normal random 
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Figure 2 
(a) A curve showing the specific response (i.e. gradient of 
calibration graph) versus concentration of a drug develop- 
ment candidate, assayed by GC, assay used to provide data 
for the simulations. (b) Curves of three functions based on 
the same GC data, for comparison with (a) The mean 
coefficients were derived from six independent calibration 
experiments of the drug development candidate in plasma 
x-x, y = bx; o-o, y = bx + c; *-*. 
y = axlnx + bx + c. 

number from a set of numbers with a mean of 
zero and standard deviation of 1. 

(5) Once individual responses have been 
generated for all the calibrators the coefficients 
of the equation of the calibration curve are 
calculated. 

Figure 3 
A graph showing the variation of the precision of a gas 
chromatographic drug assay with plasma concentration. 

(6) The fit of the chosen function to the 
calibration data is examined by estimation of 
the residuals. 

(7) Having determined the calibration func- 
tion, estimates of the calibration error or bias 
at each of the concentrations selected in stage 2 
are made as illustrated in Fig. 4. 

(8) Stages 4-7 are repeated until 10 simu- 
lations have been performed so that the mean 
and inter-assay variability of the calibration 
bias are determined as a function of con- 
centration. 

(9) Having completed the simulations 
similar evaluations may be made either by 
selection of a different calibration function or 

by varying the number or distribution 
calibrators. 

of the 
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Figure 4 
An enlarged section of a calibration curve showing the 
estimation of the error between an actual concentration (c) 
in a sample and the mean value (2) determined from the 
calibration curve. 
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The actual pool of 200 Gaussian random 
numbers initially used in the program had a 
mean and standard deviation of 0.03242 * 
0.98576, close to the ideal value of 0 + 1. 
However nine values outside the range 0 & 2, 
i.e. 2 standard deviations were removed to 
correspond to the common analytical practice 
of considering such values as outliers although 
they do form part of the normal statistical 
population. This changed the mean and stan- 
dard deviation to -0.01427 + 0.87793 but it 
was felt unnecessary to compensate for the 
reduction of the standard deviation from 1 by 
refining the calculations as the experimentally 
determined values of intra-assay precision used 
in the calculations were subject to greater 
error. Although not performed in this study, 
outliers could be selectively placed into the 
pool of random numbers to deliberately test 
the effects of such values on the robustness of 
the various calibration routines. 

application of linear regression to the data 
produced a correlation coefficient of 0.9969. 
Transforming the data (Fig. 2) provides a much 
more critical review of the curve and allows 
accurate interpolation of values of the specific 
response (or sensitivity) for use in the program 
database. 

Similarly, values of the intra-assay RSD 
were obtained from the curve in Fig. 3. In this 
case the data are more scattered due to the 
small populations involved (n = 6), but the 
general shape of the curve was confirmed by 
other data. A good fit of a curve to the 
precision data is not considered as important to 
successful predictions by the program as a good 
fit of the response data. 

Application 

To test the validity of the program the results 
from an unpublished capillary GC assay were 
selected for evaluation. This assay involved the 
use of an electron capture detector which 
caused the response to show a marked devi- 
ation from true linearity and would therefore 
provide a more exacting test in prediction of 
large errors associated with linear calibrations. 
The assay was used in this laboratory over a 
range of l-500 ng ml-’ and was essentially free 
of background interference. The mean of six 
calibration curves is shown in Fig. 1 and plainly 
shows some deviation from linearity, although 

The curve in Fig. 1 suggested that a quad- 
ratic function may have been appropriate to 
describe the concentration versus response 
curve. However, the virtual log-linear plot in 
Fig. 2(a) showed the curve to be better 
described by an equation of the type y = 
uxln(nc) + bx + c, as indicated in Fig. 2(b). 
This equation was developed as part of this 
work. Neither of these regressions were avail- 
able on the data system and so in routine use 
the assay was calibrated using seven duplicate 
calibrators at nominal concentrations of 1, 3, 
10,30 . . . 1000 ng ml-’ using a point-to-point 
calculation routine. The number and distri- 
bution of the calibrators had been chosen on a 
purely subjective basis a compromise between 
adequately defining the curve on a daily basis 
and keeping the numbers of calibrators within 
practical limits. Validation of the assay using 
this routine was performed by the analysis of a 
series of fortified blank plasma samples on six 

Table 1 
Comparison of predicted and actual assay performance using point-to-point 
calibration 

Drug found (% of amount added)* 

Drug added Simulationst 
(ng ml-‘) (+ QR) 

1.03 99.7 + 4.2 
2.59 loo.9 + 3.1 
5.13 102.9 + 1.6 

10.4 100.9 f 1.5 
26.0 103.0 + 3.4 
51.9 104.8 f 1.9 

104 99.7 f 2.3 
260 100.1 f 1.5 
521 100.4 + 1.6 

Actual* assay 
(+ F) 

92.1 f 5.0 
97.8 + 4.2 

105.0 f 2.8 
100.0 rt 1.4 
100.7 + 2.6 
103.7 f 4.9 
101.9 + 2.9 
102.6 + 3.3 
100.8 + 2.9 

Actual$ intra-assay 
*(own) 

85.8 + 3.9 
93.2 f 7.6 
98.9 + 2.1 

100.3 f 3.0 
102.1 + 2.2 
105.6 f 3.9 
100.5 f 3.5 
103.4 + 4.7 
104.0 f 1.8 

*Using seven duplicate independent calibrators as described in the text. 
+Mean + standard deviation of 10 simulations. 
$Mean k standard deviation of six determinations. 
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separate occasions (overall-assay performance) 
and on one occasion when six of each of the 
samples were analysed (intra-assay perform- 
ance). On all occasions the calibration was 
performed using independently prepared cali- 
brators as described above. A summary of 
these results is shown in Table 1. 

The same raw data, i.e. the peak height 
ratios of the drug and internal standard of the 
calibrators and validation samples, were repro- 
cessed off-line using four different regression 
procedures and the results from these are 
shown in Tables 2-5 as the ‘actuals’ and 
represent the experimental assay performance 
when using these calibration routines. 
Equations for weighted (weighting factor = ll 
x2) regressions for non-linear curves were 
developed for this assessment as none could be 
found in the literature. 

Table 2 
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The characteristics of the assay, interpolated 
from Figs 3 and 4, were entered into the 
program database and the predicted errors 
estimated at the same concentrations as the 
validation samples using each of the four 
calibration routines. 

The concentrations and numbers of cali- 
brators were also the same in the simulations as 
in the experimental validation. These results 
are also presented in Tables 2-5. Comparison 
of the actual and simulated data shows that: 

(I) There is good agreement between the 
actual accuracy and the simulations for all four 
calibration routines despite the diversity and 
often unsuitability of the routines evaluated in 
some cases. 

(II) As predicted, the intra-assay precision 
is largely independent of the calibration 
routine. 

Comparison of predicted and actual assay performance using unweighted linear regression 
calibration 

Drug added 
(ng ml-‘) 

1.03 -2310 f 172 
2.59 -767 f 66 
5.13 -274 + 32 

10.4 -30.9 + 14.0 
26.0 93.7 f 4.2 
51.9 112.8 + 1.6 

104 126.3 + 1.4 
260 118.1 f 1.7 
521 106.0 f 1.7 

Drug found (% of amount added)* 

Simulations-F 
(+ orm) 

Actual.+ assay 
(+ uTT) 

-2403 f 322 
-805 f 115 
-282 f 48 

-34.5 Ifr 16.6 
95.0 + 7.1 

125.1 + 6.2 
130.9 + 2.8 
121.9 + 4.4 
107.6 + 3.2 

Actual$ intra-assay 
*(own) 

-2531 f 7.3 
-867 f 17 
-329 + 4.2 

-57.9 f 5.8 
81.2 + 3.6 

119.1 f 5.4 
125.3 + 4.1 
122.4 f 5.3 
110.6 + 1.6 

*Using seven duplicate independent calibrators as described in the text. 
t Mean + standard deviation of 10 simulations. 
t Mean + standard deviation of six determinations. 

Table 3 
Comparison of predicted and actual assay performance using weighted linear 
regression calibration 

Drug found (% of amount added)* 

Drug added Simulationst Actual+ assay Actual* intra-assay 
(ng ml-‘) (* %R) c* 9) *(%‘R) 

1.03 87.2 + 6.5 77.0 + 10.1 51.7 + 9.2 
2.59 129.2 + 2.0 123.2 f 6.9 112.1 + 11.3 
5.13 135.7 f 1.3 136.1 Ifr 5.8 127.2 + 2.7 

10.4 131.9 * 1.5 130.4 + 6.8 130.2 f 3.7 
26.0 118.9 f 1.5 120.8 + 4.6 119.6 f 2.4 
51.9 106.8 f 1.5 108.6 + 2.1 110.6 f 3.5 

104 93.8 f 1.3 96.8 f 2.1 97.9 + 2.6 
260 79.7 + 1.2 81.9 * 1.8 85.9 f 3.4 
521 69.1 k 1.0 69.9 + 2.8 74.9 f 1.0 

*Using seven duplicate independent calibrators as described in the text. 
tMean + standard deviation of 10 simulations. 
$ Mean + standard deviation of six determinations. 
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Table 4 
Comparison of predicted and actual assay performance using weighted quadratic 
regression calibration 

Drug found (% of amount added)* 

Drug added Simulationst Actual$ assay Actual$ intra-assay 
(ng ml-‘) (+ OBR 1 t+ 4 + t”WR) 

1.03 93.1 t 5.6 85.4 + 8.4 66.8 + 7.7 
2.59 117.4 + 1.7 112.9 + 5.3 105.0 f 9.7 
5.13 119.4 f 1.4 122.4 f 2.6 113.7 f 2.3 

10.4 114.6 + 1.7 115.8 f 2.0 114.2 + 3.3 
26.0 103.1 + 1.7 104.5 k 2.9 104.5 * 2.1 
51.9 93.5 f 1.7 94.8 + 1.2 97.4 f 3.2 

104 83.7 + 1.5 86.2 + 2.8 89.4 + 2.7 
260 75.6 + 1.4 77.5 + 2.2 82.0 + 3.7 
521 73.8 + 1.3 74.1 f 3.5 80.4 f 1.5 

*Using seven duplicate independent calibrators as described in the text. 
t Mean + standard deviation of 10 simulations. 
$ Mean + standard deviation of six determinations. 

Table 5 
Comparison of predicted and actual assay performance using weighted regression 
y = UXIM + bx + c 

Drug found (% of amount added)* 

Drug added Simulationst 
(ng ml-‘) (* %R) 

1.03 98.8 + 4.2 
2.59 101.6 f 1.5 
5.13 102.4 + 1.8 

10.4 102.0 + 2.1 
26.0 100.0 + 2.1 
51.9 98.0 + 1.9 

104 95.4 + 1.6 
260 96.0 + 1.1 
521 97.5 + 1.3 

Actualt assay 
c+ UT) 

90.6 + 6.2 
96.3 + 3.7 

103.7 + 2.2 
102.1 ?z 1.3 
100.6 + 3.0 
98.4 f 1.7 
97.5 f 2.4 
97.4 _+ 2.6 
96.7 f 3.6 

Actual* intra-assay 
* (%R) 

80.8 f 5.6 
92.7 + 7.7 
97.8 f 2.1 

101.5 + 3.1 
100.4 + 2.2 
100.8 zk 3.7 
97.8 + 3.1 

100.4 + 5.0 
100.4 rt: 1.8 

*Using seven duplicate independent calibrators as described in the text. 
t Mean + standard deviation of 10 simulations. 
*Mean + standard deviation of six determinations. 

(III) The relationship between the total 
precision (a,), intra-assay precision (uWR) and 
the in:er_assay component of precision (or&, 
i.e. UT - UWR2 + u& was only approximate. 
This was partly due to the small populations 
involved in the estimations of the standard 
deviations. However, the large value of the 
total imprecision observed at low concen- 
trations using unweighted linear regression 
(Table 2) was predicted, although exaggerated 
by probable overestimates of the values of (TwR 
used in the calculations. 

(IV) The intuitive choice of a point-to-point 
calibration, for this assay, was confirmed both 
by the Monte Carlo simulations and the much 
more laborious recalculation of the raw data. 
The weighted regression y = &n(x) + bx + c, 
which was developed in hindsight as a result of 
these simulations being available, also shows a 
good fit to the data. Mean values of a = 

-0.685, b = 7.12 and c = 0.587 were obtained 
for the coefficients in the six inter-assay vali- 
dation runs. The actual underestimates at low 
concentrations compared with the simulations, 
observed for both routines, probably reflects 
differences in the small background response 
between the calibrators and validation 
samples. 

Discussion 

The main benefit of Monte Carlo simu- 
lations is that the effects of the choice of an 
individual calibration routine when applied to 
a real analytical situation are quantified with- 
out any real resort to mathematics by the 
analyst. Although the primary aim of the 
project was to improve the quality of the 
reported data, the non-mathematical aspect of 
the simulations also provide a teaching aid. It 
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was shown that the error associated with an 
estimated value could be broken down into 
four components, namely, bias, intra-assay 
precision, inter-assay component of precision 
and other, non-quantifiable, effects. Intra- 
assay precision is a characteristic of an assay 
which must be determined experimentally and 
was used in the database to provide estimates 
of the bias and inter-assay components of 
precision, two components of error which are 
frequently overlooked. Thus the quantifiable 
errors in a given assay were estimated as a 
function of concentration by considering a 
number of individual concentrations over the 
assay range. It is important to note that these 
were chosen independently of the calibrators 
and the calibration routine under investigation. 
In the example given Monte Carlo simulations 
were used to select the most appropriate 
calibration function for the assay, but equally 
well the number and distribution of the cali- 
brators, the weighting factors used in the 
regressions and the effect of outliers could 
have been assessed. 

The approach taken in this study was 
fundamentally different from that generally 
taken in that the total error associated with a 
reported value was assessed. Assays are often 
validated by analysis of a large number of 
calibrators and, once the parameters for the 
calibration function have been determined, the 
accuracy and precision are estimated by back 
calculation. However, on a routine basis a 
much smaller number of calibrators are used. 
It is then that the limitations of inappropriate 
weighting factors used in the calibration re- 
gression can arise producing large errors 
associated with the inter-assay component of 
precision which was not assessed by this 
method. Another technique is to monitor the 
residuals from the calibrators to the individual 
calibration curves and to apply different 
weighting factors to the regression until the 
best fit is obtained. This implies that the 
characteristics of the assay are changing on a 
daily basis when perhaps what is really happen- 
ing is that atypical distributions are occurring 
because of normal random variations and small 
population sizes. Both of these effects can be 
shown by Monte Carlo simulations. 

Construction of curves of the response and 
precision as functions of concentration to be 
used as a source of data for the program was 
felt to have several advantages. These curves 
were considered as being a real representation 

of the underlying characteristics of the assay 
and there was no need to define them in terms 
of an assumed mathematical function. No 
undue weighting was given to any individual 
value, outliers could be eliminated and there 
was no need to assume that the concentrations 
were free of errors. 

Furthermore, the simulations were designed 
to duplicate the actual analytical process so 
that individual calibration techniques can be 
evaluated using real analyses rather than under 
ideal conditions. 

In the example given, the degree of non- 
linearity of the response was greater than 
normally experienced in chromatographic drug 
assays. However, this served to illustrate the 
power of the technique which showed good 
agreement between the predicted and esti- 
mated plasma concentrations even when large 
values of bias were involved. It is worth 
emphasizing that the performance of the pro- 
gram is dependent upon the quality of the data 
from the response and precision curves. The 
most critical curve from which the assay 
characteristics are taken is the plot of specific 
response versus concentration (Fig. 3). Usually 
there is little scatter of the data from the 
smooth curve constructed by eye and the 
robustness of the technique can always be 
tested by construction of several curves. Esti- 
mates of the intra-assay precision function are 
less clearly defined because of the greater 
scatter of the data (Fig. 4). However, this only 
becomes important when large values of the 
inter-assay component of precision are esti- 
mated and the error is amplified, as in the 
example of unweighted linear regression. 

Monte Carlo simulations provide a means 
whereby diverse calibration routines can be 
quickly evaluated under standard conditions 
thereby allowing valid comparisons to be 
made. In routine use, it is envisaged that 
having performed an initial evaluation, further 
refinements to the calibration in terms of the 
numbers, concentrations and distribution of 
the calibrators would be investigated. Alter- 
natively, if none of the available regression 
routines were found to be suitable, as in the 
example given, other regressions could be 
derived or obtained from the literature. These 
are then easily inserted into the program for 
evaluation. 

Another benefit of the use of Monte Carlo 
simulations is that they provide documentary 
evidence for the rationale behind the choice of 
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a particular calibration routine for a given 
assay. This may be of importance in the 
pharmaceutical industry or in similar situations 
where data is subject to review by various 
regulatory authorities. 

In the introduction, questions were raised as 
to the validity of the application of various 
calibration routines to chromatographic drug 
assays. Monte Carlo simulations have been 
shown to provide a means to answer these 
questions in real analytical situations. 
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